2019
09-20
再说一种Package
2019
09-20
有规有矩,依法办事
2019
09-20
total_bill tip sex smoker day time size
2019
09-20
手段十大智若愚.取人之长,补弓z短
2019
09-20
total_bill tip sex smoker day time size
2019
09-20
创建测试对象pd.DataFrame(np.random.rand(20,5)):创建20行5列的随机数组成的DataFrame对象pd.Series(my_list):从可迭代对象my_list创建一个Series对象df.index = pd.date_range('1900/1/30', periods=df.shape[0]):增加一个日期索引查看、检查数据df.head(n):查看DataFrame对象的前n行df.tail(n):查看DataFrame对象的最后n行df.shape():查看行数和列数df.info():查看索引、数据类型和内存信息df.describe():查看数值型列的汇总统计s.value_counts(dropna=False):查看Series对象的唯一值和计数df.apply(pd.Series.value_counts):查看DataFrame对象中每一列的唯一值和计数数据选取df[col]:根据列名,并以Series的形式返回列df[[col1, col2]]:以DataFrame形式返回多列s.iloc[0]:按位置选取数据s.loc['index_one']:按索引选取数据df.iloc[0,:]:返回第一行df.iloc[0,0]:返回第一列的第一个元素df.values[:,:-1]:返回除了最后一列的其他列的所以数据df.query('[1, 2] not in c'): 返回c列中不包含1,2的其他数据集数据清理df.columns = ['a','b','c']:重命名列名pd.isnull():检查DataFrame对象中的空值,并返回一个Boolean数组pd.notnull():检查DataFrame对象中的非空值,并返回一个Boolean数组df.dropna():删除所有包含空值的行df.dropna(axis=1):删除所有包含空值的列df.dropna(axis=1,thresh=n):删除所有小于n个非空值的行df.fillna(x):用x替换DataFrame对象中所有的空值s.astype(float):将Series中的数据类型更改为float类型s.replace(1,'one'):用‘one’代替所有等于1的值s.replace([1,3],['one','three']):用'one'代替1,用'three'代替3df.rename(columns=lambda x: x + 1):批量更改列名df.rename(columns={'old_name': 'new_ name'}):选择性更改列名df.set_index('column_one'):更改索引列df.rename(index=lambda x: x + 1):批量重命名索引数据处理:Filter、Sort和GroupBydf[df[col] > 0.5]:选择col列的值大于0.5的行